C(X)=(x)(2400x+7)-(20x^2+7x+3500)

Simple and best practice solution for C(X)=(x)(2400x+7)-(20x^2+7x+3500) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for C(X)=(x)(2400x+7)-(20x^2+7x+3500) equation:



(C)=(C)(2400C+7)-(20C^2+7C+3500)
We move all terms to the left:
(C)-((C)(2400C+7)-(20C^2+7C+3500))=0
We calculate terms in parentheses: -(C(2400C+7)-(20C^2+7C+3500)), so:
C(2400C+7)-(20C^2+7C+3500)
We multiply parentheses
2400C^2+7C-(20C^2+7C+3500)
We get rid of parentheses
2400C^2-20C^2+7C-7C-3500
We add all the numbers together, and all the variables
2380C^2-3500
Back to the equation:
-(2380C^2-3500)
We get rid of parentheses
-2380C^2+C+3500=0
a = -2380; b = 1; c = +3500;
Δ = b2-4ac
Δ = 12-4·(-2380)·3500
Δ = 33320001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{33320001}}{2*-2380}=\frac{-1-\sqrt{33320001}}{-4760} $
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{33320001}}{2*-2380}=\frac{-1+\sqrt{33320001}}{-4760} $

See similar equations:

| 1x/7-5/8=7/8 | | 4v-3=27 | | |7x+126|=14x | | -2(-c-16=-2c-16 | | 6.8x-4.1=6.10 | | X+4y+14=0 | | 10z-z=-2+6z-1-6 | | -2b−14=-16 | | T=15x+1,000 | | (5x+9)+(3x+11)=180 | | 1x+8=6x+2 | | z4-3z+1=0 | | -3(r+4)=38 | | 0.03(7x+2)=0.21(x+2)-36 | | 2x+3.6=8 | | 4+4v=-24 | | -5(x+8)+4x-1=-3(x+4)+2x+5 | | 3/x-3=-4/x+2+8/(x-3)(x+2) | | 3x^2+4x+1=-2x-2 | | -7+2y=-13 | | (15x-2)=(7x+14) | | 0.5=x50 | | x+20=-3 | | 3x+4=2x-271/4 | | -26=2+4y | | 0.18-0.01(x+1)=-0.03(1-x) | | 3p=9/13 | | -11=2u-3 | | 5(1+x)=6x+5 | | 35x2+-18x+-5=0 | | C(35)=0.75y+6 | | 30x=12x+19x |

Equations solver categories